Data Center Build vs Buy: Benefits of Partnering with Data Center Operators

Digital transformation is accelerating and churning out data at never before pace. Organisations have been restructuring their infrastructure footprint to meet the evolving digital needs – of businesses, operations and customers. Regardless of scale, technology and nature of digitalisation, data centers form the core focus of any business. Third-party colocation services are, unarguably, becoming a preferred choice for a large proportion of enterprises – we have witnessed this trend during and post-pandemic continuing. This is evident through the growth of data centers and future forecast. According to Arizton Advisory & Intelligence, real estate demand for data centers is set to rise by 15–18 million sq.ft. by 2025 and by 2027, the Indian data center industry will pose $10.09 billion worth of opportunities.

Need for custom data centers
The surge in cloud uptake has made hyperscalers bullish on the Indian market and expand their operations. Data centers form their primary requirement for expansion – and they need massive capacities, which is often a hindrance in a market like India, where data center infrastructure is still in the growth phase. This leads them to leverage the existing data center infrastructure to set up availability zones to cater to the booming demand or build their infrastructure.

But it’s not just the hyperscalers. As the business grows, large enterprises with dependencies on captive infrastructure need scalable and reliable data centers to meet their current and future needs. Further, as they phase out legacy infrastructure and modernise their data centers, a holistic refresh becomes paramount, leading them to move out of on-premises data center setups and build a dedicated data center facility at a preferred location.

Meanwhile, hyperscalers must maintain committed SLAs and operational efficiencies that demand custom data center designs and specifications. Building a data center facility from scratch would be the best approach to accommodate these needs, but it also means increased time-to-market. It includes complex procedures – from land acquisition, regulatory approvals, design and construction, hardware procurement, and meeting the desired Power Usage Effectiveness (PUE) ratio.

Factoring the top challenges

Cost: Building a data center doesn’t come cheap. Even for large enterprises, the upfront CapEx can mean a substantial investment.

Land procurement and approvals: Enterprises possess expertise in their core business. Procuring land and treading through approvals involves cumbersome processes, particularly in markets like India.

Design and construction: Contracting data center design and engineering experts further adds to the upfront capital requirements.

Supply chain: Procuring specialised equipment and hardware involves dealing with many vendors globally, adding to the complexities.

The direct impact of the above constraints includes delayed project completion and significantly greater time-to-market, which can affect your business in a big way.

Build or Buy: Let the experts do it
Whether buying or leasing a data center or building one, getting it done through a local data center player like Yotta offers significant advantages. Yotta possesses the resources, design and construction expertise, connectivity infrastructure, bulk hardware procurement capabilities, and operational skillsets that businesses can leverage and bank upon. Let’s look at some major ways hyperscalers and enterprises gain with outsourced build and buy models.

Cost advantage
Building a data center is expensive, and a lot of elements go into it – from power and UPS infrastructure, diesel generators, cooling systems, storage and networking hardware, and more. Hyperscalers and enterprises can ensure significant cost savings with the outsourced Build-to-Suit (BTS) model. The data center operator can leverage its economies of scale and eventually pass the cost advantage.

Faster Time-to-Market (TAM)
While buying a pre-constructed data center definitely enables your business to go-live within the shortest possible timeline, the custom-build approach extends it owing to the time incurred in land parcel identification and acquisition, government approvals, design and construction, equipment procurement and more. If a custom-build data center is your business need, you can still bring down the time with the Build-to-Suit approach. Domestic data center players also better understand regional topography, which is an essential factor in the design, construction and overall efficiency of a data center.

Efficiency
Data centers are known as power guzzlers, and there is a visible shift towards increased efficiencies and sustainability at various levels – business, industry and customer. Power usage effectiveness (PUE) is a critical factor in ensuring energy optimisation, and it holds greater importance, particularly for global hyperscalers for meeting their sustainability goals. While buying a data center may provide pre-defined PUE ratios, a BTS data center offers greater scope for meeting the desired levels. However, it must be noted that regional climatic conditions largely affect PUE ratios. For example, in a tropical country like India, PUE of 1.5 is considered the lowest achievable level. This is mainly because the Indian climate requires HVAC systems to remain operational 24×7, unlike European regions where natural conditions complement the cooling process.

Network and connectivity
Network and connectivity is the lifeblood of a data center, which eventually determinines performance and business outcomes. The cost of connectivity, however, can account for a significant portion of the overall CapEx. Additionally, with current restrictions on laying own fiber further act as hurdle. Data center operators are better placed to get bulk fiber connectivity, which eliminates time and effort intensive process of negotiating with connectivity providers, while bringing greater cost advantages. Data center operators’ extended connectivity with Internet Exchanges, content delivery networks, cloud service providers further helps ensure seamless connectivity to a host of services.

Compliance
Maintaining compliance with various regulatory norms, guidelines and industry practices involves complex considerations. Uniformity in regulations in different geographical further adds to the complexities. Data center developments, for instance, are classified under commercial or industrial buildings standards, hence parking requirements are also determined accordingly, requiring provisions such as on-grade parking according to local directives. Fire compliance is another critical area that demands critical consideration. Possessing extensive experience in design and construction, data center operators can eliminate the complexities and help make your data center compliant.

Management
With widespread migration from CapEx to OpEx based consumption models, enterprises are shedding investments in keeping the lights on. Modern IT teams’ focus is channelled towards innovation and customer service delivery. Data center operations demand a 24×7, dedicated and skilled resource pool. Moreover, managing a data center building involves more significant complexities than a small captive data center. To avoid maintenance, monitoring and management hassles, enterprises can bank upon the inhouse expertise of data center operators who possess a team of domain experts, engineers, and IT personnel.

The future of data centers lies in ‘scale’. Data growth will continue to skyrocket, and the resultant demand for infrastructure will bolster the growth of data centers. Hyperscalers are bullish on cloud growth and will continue to ramp up investments in India. Led by business needs, an increasing number of enterprises will exhaust their existing data center capacities. While multi-tenant colocation may work for some, many large enterprises need dedicated data centers. The above factors remain key to achieving the end objectives. Data center operators are well positioned to cater to every evolving needs – from colocation, buy-out or build-to-suit. Yotta combines its data prowess in the data center industry with the Hiranandani Group’s capabilities in architecture, construction and power, while leveraging economies of scale.

The Changing Face of Data Centers with Sustainability

Once a good-to-hear buzzword, sustainability has evolved as a mandate for global corporations and governments alike. It has prevailed as a strong determinator of a successful business strategy, with commitments towards the planet becoming integral to their objectives. As world leaders set ambitious sustainability goals for their nations, the onus lies equally on the industries to collectively steer efforts in this direction. Prime Minister Narendra Modi’s announcement of India achieving net-zero emissions by 2070 at COP26 Glasgow reflects the government’s strong focus on fostering a sustainable, healthy and better planet for generations to come.

India is unarguably walking the talk in tackling climate change. Today, with private and public partnerships, many developmental schemes are framed to align with the Sustainable Development Goals (SDG) set by the United Nations. Also being one of the least waste generating economies. The country has been a key player in shaping the Paris Agreement and has adopted various energy-efficiency measures. India has demonstrated one of the most successful campaigns on phasing out single-use plastic, amplifying the ‘Swachh Bharat’ mission and constantly contributing to the Earth’s wellbeing. Mumbai alone has announced a detailed plan to zero out carbon emissions by 2050 – a target that puts it two decades ahead of India’s national goal and makes it the first South Asian city to set such a timeline.

Efficiency is key
Data centers, over the years, have been notoriously known as power guzzlers. It is estimated that data centers globally consume around 200 terawatt-hours (TWh) each year. This even exceeds the total annual energy consumption of some countries. Data centers contribute around 0.3% to the overall carbon emissions of the world. This intense energy consumption can be attributed to their critical operations that demand them to run 24×7, but the change is now evident with the focus on bringing more efficiencies and embracing renewable energy sources.

Emerging markets like India, which are in the growth phase, stand in a favourable position to drive greater efficiencies owing to low legacy and ageing infrastructure footprint. We can take cue from Singapore’s moratorium on data center development due to sustainability concerns and channel our efforts towards more efficient, greener data centers.

A typical data center houses thousands of components that keep the facility running – servers, cooling equipment, chillers, power backup and generators, networking equipment, etc. All these require uninterrupted power. Hence achieving carbon neutrality requires data center operators to achieve energy efficiency in each component. Green, alternative energy sources form a part of the solution, but it’s not a master key. There is no master key; it’s only when data center companies evaluate and bring efficiencies in each element of their operations, that they stand in a position to make their facilities environment-friendly.

Taking a green leap
The growing realisation among enterprise customers and hyperscalers is leading to concrete actions. Boardroom discussions are witnessing environmental focus as an inseparable part of corporate accountability and business strategies. Interestingly, a green focus brings a host of long-term business benefits that can positively impact operations and the bottomline. Global enterprises and hyper-scale customers are pushing their data center operators to help them achieve their sustainability targets, thus resulting in focused actions by every stakeholder. For instance, some customers insert clauses into the agreements mandating data center operators to reduce a specified percentage of carbon footprint. In case of failing to do so, the data center operator has to bear penalties which can be as high as 20% of the total contract value.

Even the Securities and Exchange Board of India (SEBI) has introduced requirements for sustainability reporting by listed companies under the Business Responsibility and Sustainability Report (BRSR). It aims to establish links between the financial results with its Environment, Social and Governance (ESG) performance.

Yotta embraces these developments positively. With our unwavering efforts to invest in building large data center capacities to meet the rising digital demands while investing in our planet, today, Yotta is able to deliver 100% green power to our customers and contractually commit to our global customers to reduce our carbon footprint, in turn helping them in meeting their Scope 3 obligations under the GHG protocol.

Taking a long-term approach, Yotta is building facilities to allow us to run 100% on renewables – whether offsite, through solar and wind coupled with onsite hydrogen-based co-generation and fuel cells in the future. With this, we are changing the entire outlook and efforts towards decarbonisation in the data center industry.

Setting new benchmarks
Yotta’s data centers are built with the lowest possible PUE (power usage efficiency) of <1.4 which are extremely good considering India’s tropical weather. In addition, our fault-tolerant Uptime Institute certified Tier IV construction uses automation in many of our power and cooling distribution processes, thus optimising our power utilisation further.

Here are the top ways how we are and how other data center players can ensure that data centers remain future-ready:

Data Center Site: The site where data center(s) will come up should have adequate space for onsite power generation and storage of energy. At the same time, data center built amidst a green surrounding tends to gain from natural conditions.

Carbon Offsets: Taking steps to reduce carbon footprints, data center operators can compensate carbon emission amounts by adopting measures like planting trees.

Upgrading equipment: Many data centers use old, less efficient equipment. Switching to the latest, more energy-efficient equipment helps a great deal. For instance, at Yotta NM1, we use lithium-ion batteries in UPSes for power backup – ensuring longer output with reduced charge cycles.

Operational excellence: A data center is a building where, space, cooling, power, water etc are utilised. A state-of-the-art Building Management System plays a crucial role in maintaining the sustainability of data centers. By deploying intelligent systems, temperatures in the facility can automatically adjust depending on the outside temperature or the IT load.

Resource optimisation: While using clean source of water, data center operators must also avoid water leakage which might seem negligible, but may add to the energy consumption. Additionally, as data centers need cooling and have to maintain adequate temperature, instances such as air leaks reduce the overall cooling efficiency.

E-waste management: Whether through in-house capacities or partners, e-waste management significantly helps reduce the environmental impact from discarded, old, and obsolete equipment and hardware.

Set on a mission to become a global data center hub, India’s data center industry will continue to grow at an unprecedented scale. However, sustainability and growth must run in tandem to make India a true data center hub and a successful one. Our focus on digitisation, with commitments to ensure healthy planet earth, will determine the future of businesses and the lives of our people.

How will Artificial Intelligence Drive the Growth of Future Data Centers?

Artificial Intelligence (AI) has been around for quite some time now, disrupting businesses and sectors with its capabilities to boost performance and bring in operational efficacies. The data center industry is no exception. In today’s time, data holds a huge significance for any organisation, and what’s equally important is managing that data effectively. Once filtered and crunched, the harvested data proves vital to making strategic business decisions for companies. Hence, companies are investing in advanced automation tools for data processing and migrating to hyperscale data centers to upgrade their IT infrastructure. Explosion of data in recent years has led hyperscalers to innovate and deploy AI technologies in their facilities to handle tasks autonomously.

The use of automation technologies in data centers is hardly new. For example, Google has explained the use of DeepMind AI for cooling. However, companies are yet to leverage AI/ML to the fullest. Factors such as distrust in technology have obstructed many organisations to take a leap towards AI. While the most known use cases for AI deployment in data centers are temperature control and predictive maintenance, AI’s potential to enhance the efficiency of a data center infrastructure is far more than widely known. Let’s look at some use cases of AI in data centers that will change the future of the industry.

Managing Workloads

As data center workloads move upward with an increase in data, many businesses are looking towards AI to boost efficiency and cut expenses. AI can be used to determine the workload movement in a hybrid setting in real-time to the most efficient infrastructure that could be cloud, on-premise or edge infrastructure. As AI makes its way into the data center industry, organisations are adopting innovative approaches to handle their data to allow more use of robust AI techniques and analytics.

Gartner predicts that by 2025, 70% of organisations will shift their focus from big to small and wide data; this will facilitate more context for analytics and make AI less data-hungry. Small data approach provides useful insights with fewer data, whereas broad data offers analysis performed on various large, unstructured data in diverse data formats. Together, both approaches allow advanced analytics and AI, reducing the reliability of big data.

Mitigating people shortage

Automated technologies in data centers promise less human intervention in regular and repetitive tasks. It frees up staff from mundane activities such as storage optimisation, cooling distribution, security settings and so on and allows them time to focus on more critical issues. It not only achieves greater efficiencies but also reduces the risk of human errors while handling complex and diverse workloads. For example, at our Yotta NM1 data center, in case of a leakage in a chiller pipe, a sensor-enabled Leak Detection System not only diagnoses the leakage but also mitigates the problem in real-time without manual intervention. Upon detection of leakage in the chiller pipeline, the system automatically diverts the water flow from an alternate pipeline. All this can be managed without running the risk of downtime in the data center. Automation is creating a pathway for data centers to go from reactive to preventative, leading to predictive.

Maximising power efficiencies

Power consumption is one of the most critical issues for data centers across the globe. Energy costs surge by at least 10% every year; its increased use in high-density servers is also not sustainable for the environment. Deploying AI/ML technologies can be a solution to the increased energy use in data centers. Systems in data centers generate significant heat; traditionally, air conditioners, chillers, water pumps are controlled by Building Management System (BMS) to keep the temperature in check. However, it is not energy efficient. AI-based power management can help optimise cooling systems by analysing historical data and creating a Power Usage Effectiveness (PUE) prediction model, cutting power costs and improving efficiency.

Enhancing security

In a hyperscale data center, where several events occur together, it is nearly impossible for humans to monitor and alert everyone in case of threat situations. AI-powered tools have proven useful in such areas. For example, image and sound recognition capabilities are being used widely to enhance the physical security of a data center facility; AI analytics is being used as a video surveillance solution to make sense of data collected by security cameras. Machine Learning techniques are also being leveraged for anomaly detection, where the system is trained to identify usual patterns and detect the irregular ones.

For example, again, at our Yotta NM1 data center, we have AI integrated security cameras keeping an eye over critical locations. These cameras will raise a ticket to the security control room of the data center if they detect more than 10 people gathered at the front gate or if they detect an unattended object in the premises for a certain period of time. Without automation, it would take hundreds of security personnel to watch over the physical security of the data center 24/7, which can often span into acres. This technique is also helpful in predictive analysis, where the AI system flags off any unusual occurrence in advance to be checked before a system completely breaks down. Hence, data center security can be strengthened by using AI for self-learning threat detection and monitoring algorithms.

Data centers of the future will certainly be more AI dominant, and almost all functions in the facility will be automated. Though these technologies are only in the hands of a few large hyperscalers and enterprises, they will soon trickle down to other data center players as technology upgrades, trust grows, and costs are cut down. Moreover, given the digital adoption accelerated by the pandemic, these advancements will be seen in practice sooner than later.

Why does Data Center Interconnection matter?

With a huge rise in digital activities, the number of data centers being created are increasing exponentially. As the number of data centers increase, there is a huge need for establishing connectivity between data centers so that they can talk to each other.

What is Data Center Interconnect?

Data Center Interconnect (DCI) is the technology that is used to connect two or more data centers over short or long range distances. Interconnection is required for not only connecting physical devices such as routers, switches, firewall, servers, etc. in different data centers to each other, but also to support requirements such as backup, IT management, business continuity and disaster recovery. Interconnection between data centers can be established using distributed exchange points hosted in vendor-neutral or any colocation facilities. Data Center Interconnect is also crucial in balancing and sharing resources, especially when demand or traffic grows exponentially.

The need for interconnection between data centers

Due to the huge growth in SaaS services, adoption of work from home, cloud, etc., connectivity has become a very crucial for any business user. The need of the hour is to improve the latency and response time between user and data center. Due to hybrid IT solutions data center traffic has increased exponentially between data centers. This has increased the importance of establishing connectivity between data centers. Interconnectivity helps in creating many-to-many connectivity options, which is of immense value in a connected era. It helps enterprises to reduce latency as distances are reduced. This helps in improving the overall user experience and cost.

Types of Interconnection

Depending on the specific requirement, different types of data center interconnect initiatives can be explored. Some of these include:

Peering Exchange: A peering exchange is a marketplace that allows ISPs to connect with each other and exchange IP traffic for their mutual benefit. This avoids costs that could be incurred in third-party networks for ensuring connectivity. It also helps in improving the end user experience due to shortest and best network route.

Cross Connect: A cross-connect is established through a physical cable that provides direct connectivity between two termination points in a data center. Cross-connects are primarily used to create a direct link between two individual units within a data center.

Inter-Site Connectivity: This type of connectivity is used to establish a physical or virtual data connection between two data centers to reduce link failures, load balance and reduce traffic congestion.

Blended IP: This option combines multiple connectivity options of ISPs to provide a single reliable and redundant connection. Blended IP service providers provide firms with the option of a single redundant Internet connection without the option of negotiating with multiple service providers. This help to get highest speed data transfer as compared to single provider.

The advantage of a data center provider over a telecom service provider

When compared to telecom service providers, data center providers can offer multiple networks which can ensure redundancy. Data center service providers also can purpose-build a Data Center Interconnect service that is specifically customized for enterprise workloads. This allows better scalability and makes it relatively easier for organizations to meet their DR or business continuity requirements.  This is vital in the multi-cloud era, where enterprises need the flexibility to interconnect different data centers without being constrained by interoperability challenges. This is done using open standards-based Data Center Interconnect technology.

Data center service providers also provide a single central option for connectivity irrespective of where the customer’s infrastructure is situated. The customers also do not need to separately approach hyperscaler’s or telcos for connectivity options. The data center provider is responsible for giving next hop connectivity for hyperscaler’s from a single port, from where the traffic can be further diverted.

Benefits for hyperscaler’s

Due to the increasing number of digital activities and initiatives, the demand for hyperscale data centers has shot up exponentially. Networking giant, Cisco, has estimated that hyperscale data centers will account for 55 percent of all data center traffic by 2021. However, hyperscale data center providers cannot grow at the pace they want to without collaborating with service providers who provide colocation or edge data centers. Hyperscaler’s can leverage interconnected data centers provided by colocation providers to quickly expand and be closer to users where the services are expected to be delivered.

By using interconnected data centers, hyperscaler’s can quickly establish a presence in a region that they do not have a presence. With partnerships with major Internet Exchanges, data center providers providing Data Center Interconnect services help in lowering down costs and bringing down the cost of bandwidth as more traffic is locally exchanged.

A must have technology

Data Center Interconnect today, is not optional, but a must-have requirement. This is necessary for ensuring better connectivity at lower operating costs. Looking at the transformational role of the Internet and its impact on the economy, Data Center Interconnect is a critical technology as it can not only make Internet access more affordable, but it can also help in improving the speed of access by a significant percentage as traffic can be routed locally and quickly than international routes.

Banking on Data – Securely and Reliably

Digital payments and online commerce have been on the rise for many years; however, with the recent pandemic, this has only fast-tracked. With the increase in transactions, there is an increase in the data. Along with conventional banks, there are neo banks, fintech companies, and payment banks joining the ecosystem. With so many stakeholders involved, and enormous data generated, the Reserve Bank of India in 2018 came with a circular that required the storage of payment system data to be in the country. Additionally, the central government has drafted the personal data protection policy to protect consumers’ interests and safeguard their personal data.

These data regulations provide privileges to customers; however, at the same time, banks and financial institutions need to adhere to more regulatory obligations. Especially, International banks that process the payments data in their country of origin or at data centers that are out of India. While the storage or processing of personal and sensitive data can be done out of India, a mirror copy of the same must be maintained here in India. Additionally, there needs more clarity on what constitutes critical personal data. And this data, labelled as critical and personal, cannot be processed or stored outside India.

If data is the new oil, data centers are the bunkers that secure that oil

With data consumption on the rise, India is witnessing a surge in investments in data centers. While these investments depict the interest of players in the market, the actual realisation of these data centers will take several years, if not many.

So, can International banks or the BFSI industry or foreign companies till then avoid these laws?

While this has been a topic of debate and everyone has their viewpoints, the sooner banks set up their local data storage and processing facilities, the better equipped they would be to scale and handle new customers. Data storage and processing at such a large scale can only be achieved at a third-party data center. Having said this, building or maintaining captive data centers is both time consuming and a costly affair.

How do banks evaluate their colocation needs?

Latency for financial institutions is of prime importance. A moment lost can cost a bank a fortune. Moreover, with repeated downtimes, banks can lose customers faith and subsequently, their business. At the same time, security and meeting compliance requirements is another criterion that banks must evaluate.

Below we outline the seven factors that a bank should consider before making a move to an MTDC

Uptime Institute (UTI) Tier IV Certification – This certification is the epitome of quality. A UTI Tier IV certification assures you of the highest quality and infrastructure standards aligned with international best practices. Built on the concept of redundancy and reliability, a UTI Tier IV data center operates in case of severe disruptions, providing business continuity for your mission-critical operations. For instance, last year, during cyclone Nisarga, Yotta NM1 functioned without any outage; besides this, it was also operational during the famous Mumbai power outage.

Low-latency connectivity – Always prefer data centers with captive fiber connections. Our data center Yotta NM1 is well connected to the world via two dedicated fiber paths, each coming in from Mumbai-Pune Expressway and Old Mumbai-Pune Highway. All major telecom operators are connected with Yotta NM1, ensuring redundant, low-latency, and fail-safe connectivity.

Security and Compliance – This is one of the most critical aspects. Being regulated by various government and semi-government bodies, banks need to meet their compliance and regulatory requirements. Failure to meet these can result in security compromise and financial losses. Yotta meets critical compliance standards like the PCI: DSS 3, ISO/IEC 27001:2013, OPEN IX-DC OIX-2, ISO 9001:2015, ISO/IEC 20000-1:2018, ISO/IEC 27018:2019, and more. Additionally, it also offers robust physical security with industry firsts like Narcotics and Chemical detector, Authorised Key Management System for racks, and more.

Scalable – It makes no sense to work with a colocation provider that can only meet your current requirements. Your business is here to stay and grow. With this growth, you need scalability at the same site for a more seamless transition in the future. And for this, do not just take our word; we recently were honoured with the Innovation in Scalable Banking Infrastructure Award by The Economic Times.

Growing Storage – As with any business, the storage demand of banks is also growing. Banks are generating new data, thanks to online banking and other e-facilities. These data need to be stored, processed, and analysed reliably and securely. It is these data centers that provide a robust and reliable storage solution for these unstructured data. Besides, the cloud’s scalability also makes it easy for banks to access this 24x7x365, irrespective of the circumstances.

Location Advantage – The most ignored factor in selecting the co-location provider. A data center present amidst the commercial and residential hubs is more prone to disruption than a remote location far from the city’s hustle-bustle. Simultaneously, especially for International banks, data centers located in SEZ deliver an added advantage in terms of tax benefits, exemption from GST, Forex billing, and more.

Comprehensive services – An added advantage that banks can derive from the co-location partner where they can offer IT management, security, and other cloud-based applications on As-a-Service model. For instance, the latest Reserve Bank of India (Digital Payment Security Controls) directions, 2021, spells out the need for Fraud Risk Management amongst others. At Yotta, we offer Banking Compliance-as-a-Service that includes Anti-Money laundering solution and Reconciliation & Settlement System on cloud, that is scalable and offers complete risk management compliance solution.

Many banks are moving away from captive data centers to third-party co-location providers. The benefits are enormous. At Yotta, thanks to our state-of-the-art infrastructure, like Building Management System (BMS), you can remotely monitor your set-up without stepping out. Besides, in case of urgent deployments or emergency maintenance, teams can utilise our on-premise stay facilities at our comfortable service apartments.

Still not convinced. Schedule a tour of our data center and experience yourself.

Top 5 Predictions that will shape up Indian Data Center Industry in 2021

Here are some of the key trends that will shape up the Indian data center industry in 2021:

As the world is gearing up for the massive COVID-19 vaccination drive, the power of digital can be seen. India is one of the few countries to roll out the vaccination programme successfully. This has been made possible only with the help of underlying robust digital infrastructure that the government created for inventory management and delivery mechanism of vaccine for the last-mile connectivity. Besides, the converging technologies like cloud, mobility, analytics, robotics, and AI/ML helped in better planning and testing several innovative approaches to vaccination drive.

It is understood that the data generated out of this massive exercise will be on the cloud, which in turn, will reside on data centers – be it government or private, or a third party like Yotta. As a data hub, data center providers are ensuring the security of the data hosted and at the same time, providing accessibility without any hurdles. Looking at the criticality and significance, one can say that the need for digital infrastructure and data centers has increased by leaps and bounds.

Similarly, this year business organisations will focus on recovering from the pandemic. And in this process, the focus will be on digital investments that can drive their transformation strategies. As the enterprises are going to fast-track their digital transformation journey to gain competitive advantage, the role of data centers will become even more important.

Against this backdrop, we have outlined some of the key trends that will shape up the Indian data center industry in 2021:

The growing demand for robust digital infrastructure & future-ready hyperscale data centers, to transform the country into a digitally empowered society. The government’s push for data localisation and introduction of Data Protection Bill indicate that India will need a big dose of infrastructure in terms of data centers. According to JLL Report on (re)Imagine Data Centers: Running India’s Digital Economy, India’s data center industry provided crucial support and boost to the digital economy during the pandemic. The report also suggests that the country’s data center capacity is expected to grow from 375 MW in H1 2020 to 1,078 MW by 2025, registering a CAGR of 21%; and higher commitments from hyperscalers and lower availability of large data center spaces expected to drive expansions by existing and new data center operators. Even the emerging use cases around AI, ML, IoT will accelerate the demand for robust digital infrastructure. With the rise in data volume and growing digital consumption, multi-tenant, hyperscale data centers will become a must.

Public Cloud continues to ignite end-to-end digital transformation, delivering on its promise of scalability, cost-efficiency, and resiliency. To drive innovative and profitable business models, enterprises must align their business transformation efforts with the adoption of the public cloud platform. This is indicated by the results of the India Enterprise Cloud Survey 2020 as well, which suggests that across infrastructure, software, and platform, a clear shift is happening towards public cloud. And going forward, more and more workloads, including mission-critical enterprise applications, are being planned to be migrated to the public cloud. Hence, it will not be possible for most organisations to transform their businesses digitally unless they move some of their IT applications and infrastructure into the public cloud.

Operating business in Everything-as-a-Service economy, maintaining a profitable, cost-efficient business without making long term CAPEX and OPEX commitment. With more and more services are being delivered on cloud, providing virtual access to everything and digital technologies like AI/ML and IoT playing a critical role in building these services, Everything-as-a-Service will gradually become an imperative for a truly digital-native enterprise. Consuming everything on ‘As-a-Service’ model will make sure that businesses are not only scaling up or down faster but also delivering new and innovative services and seamless customer experiences. At the same time, the infrastructure providers need to partner with as many SMEs, SOHOs, and Start-Ups possible, and convert their services into ‘As-a-Service’ model so that businesses can focus on their core expertise and handle their IT needs on a cost-efficient basis.

  • AI-powered tools & applications to drive autonomous systems in data centers, ensuring reliability, high availability, redundancy, and resiliency. More and more data center operators will deploy automation tools within their premises for monitoring purpose. Intelligent monitoring systems and automation solutions are driven by AI will help create smart data centers offering features like remote operating system installation, intelligent metrics, firmware updates, network, storage configuration, etc. AI/ML technology will also be used to make data centers operationally and economically viable by aiding data center management with cooling, increasing energy efficiency, failure or operational bottlenecks predictions as well as helping with cybersecurity.

Renewed focus on energy consumption & efficiency, adopting green power, improving efficiencies, and reducing operating costs. For the data center industry, on-site power generation using renewable energy sources like solar, natural gas, and wind or offsetting their carbon use will become more important. This will make the data center service providers self-reliant in their power needs and offer the customers considerable savings on power tariff. It is imperative for the data center operators to make commitments to achieve carbon neutrality, and in this endeavour, they need to reduce their digital infrastructure carbon footprints. Besides, they will look to implement more energy-efficient cooling systems, servers, power supplies, and optimise power management. Datacenter players need to constantly find ways to use energy efficiently to pass on those savings to their customers.

By now, it is evident that without the cloud, mobility, security solutions, or collaboration tools, businesses could not have implemented remote working model and maintained business continuity. And to thrive in the post-pandemic world, the enterprises will continue their spend on cloud platforms and other digital technologies. This growing adoption of the technology-driven business model means the demand for multi-tenant, hyperscale data centers will soar high, opening a plethora of opportunities for both domestic and international data center operators.

Source: http://bwcio.businessworld.in/article/Top-5-Predictions-that-will-shape-up-Indian-Data-Center-Industry-in-2021/17-02-2021-378511/

Digital Resilience in Banking Industry: Do not let downtime have the upper hand

The digital revolution has picked up a faster pace since the Covid-19 outbreak and data has become the most valuable commodity. The potential threat of downtime is keeping enterprises on their toes as it can jeopardize their goodwill and market reputation and have a long-lasting impact on revenue, productivity, and overall customer experience. A disruption like this can even pose a threat to their existence.

However, despite being informed and aware of the consequences of the downtime, we keep hearing about incidents across the globe where power or IT outages have wreaked havoc on organisations. And it is not a new phenomenon. These kinds of incidents have been taking place over a decade now. But the most surprising part is that the industries like BFSI, who are the flag-bearers of digital transformation, have also been the downtime victims.

A case in point here is India’s leading private sector bank, which recently suffered an unexpected power outage at its primary data center. It impacted several of its services for a few hours leading to a string of unhappy customers and the loss of millions in revenue, thereby affecting its brand reputation. And this was not the first time – the bank faced outages in 2018 and 2019 as well. In December 2019, technical glitches in one of the bank’s data center affected its digital banking transactions.

Mitigating the risk of downtime

Such disruptions in the digital operations of the leading bank of the country rightly point towards the enterprise segment’s lack of preparedness in case of downtime. The banking industry has a lot of catching up to do on the technological front.

Indian banks’ digital transformation exercise gained momentum during the current unprecedented situation. Thanks to the scalable data center infrastructure being the backbone of their operations, all-digital banking channels have been open for customers in these times of uncertainty. Banks certainly realise the critical role played by data centers that not only help accelerate their digitalisation journey and power their mission-critical facilities but also keeps them functional and boost digital engagement with customers (the foundation of customer experience starts with the data center).

As data centers are essential for the Indian banking industry to remain resilient, banks need to strategically look at them to continue innovating without facing any downtime. For instance, a short power flick in a data center can bring down the entire banking system for at least a couple of hours. Hence, apart from making increased technology investment, banks need to plan to mitigate against all kinds of risks.

The results of the Uptime Institute Annual Data Center survey indicates that outages are becoming more damaging and expensive. A single outage can cost over $1 million and power failures, which impact everything on-site and can cause knock-on effects, are the most likely cause of major outages.

The right colocation partner can make all the difference

It is a known fact that data centers are extremely demanding and complex infrastructure to manage. At the same time, enterprises understand the inherent risks of a power outage. Hence, they are gradually moving away from a captive setup to third-party data centers as part of the risk mitigation strategies.

This holds for banking organisations to ensure 100% uptime of all their critical infrastructure and systems. We live in an era where there’s a strong push towards digital payments, but frequent outages won’t do good to either banks or their customers. And that’s why many Indian banks partner with multi-tenant data centers that deliver superior uptime compared to a captive data center.

While selecting a colocation partner, banks need to look at data center infrastructure and how it is designed, built, and operated to the highest global standards for resiliency and reliability. Simultaneously, the data center or colocation provider needs to assure banks of their guaranteed performance. The SLA should provide the uptime of the server racks and IT equipment. In case of a disaster or crisis, is the colocation provider equipped to ensure business continuity?

Key considerations

The focus should be on real redundancy. The ideal resilient and scalable colocation should:

Be able to sustain any single point of failure.

Be truly fault-tolerant.

Be resilient in all respects – electrical, cooling, building structure, accessibility, fiber redundancy, 48 hours of backup via generators, stay facility for client’s IT staff in case of urgent deployments.

In the light and learning from what has happened with the leading private bank or one of the largest cloud companies in not-so-distant past, and many such examples in the past, I would say that whether you are hosted at your own captive data center or a third-party data center, it need a serious audit in terms of its fault tolerance.

Additionally, it should meet the scaling needs of the bank and deliver rack and power capacity even after 25 years. It should also allow you to scale down without any capital or operational cost implications.

Hence, BFSI companies need to ensure that they host at an Uptime Institute design certified Tier IV data center. An Uptime Institute design certified Tier IV Data center can function uninterrupted in power outages and disasters. Any failure in power or cooling systems or any other parameter will not bring down a customer’s rack or any other infrastructure at any point of time, thus ensuring customers’ operational continuity. If you are hosting or planning to host at any data center, check their Uptime Institute Tier IV certification status here.

The most viable option

By now, it is evident that no organisation is immune to the threat of downtime. Coincidentally, the banking sector has been facing the wrath of these outages more than any other industry. We may agree that one-off such unexpected incidents temporarily disrupt their services or lead to other intermittent issues. Still, if the banks continue to grapple with frequent downtime, then it not only causes serious inconvenience to the customers but also exposes the weakness of their digital infrastructure and operational resilience. Besides, this puts their brand reputation at risk and increases customers’ chances of switching to other banks.

With the Indian government pushing digital transactions, the IT infrastructure that supports the digital delivery of financial services must be reliable. Looking at the significant rise in the failure rates, the industry experts are calling for greater investment by banks to overhaul their infrastructure to keep pace with the growing customer demand.

In the wake of these system outages and lapses in providing digital banking services by the country’s major banks, even Reserve Bank of India has urged banks and financial institutions to increase investments and strengthen their IT systems and technology.

In this endeavour, banks must do all the due diligence regarding reliability, redundancy, resiliency, and scalability, before selecting their digital infrastructure partner. Upon closely looking at the cause of the outage incidents that rocked the services of India’s leading banks, you realise that they can be better prepared if they have a robust supporting infrastructure. Hence, banking organisations must keep in mind that if their colocation provider is not Uptime Institute Tier IV-certified, it would not be able to deliver 100% uptime, which exposes a direct vulnerability to their business.

Smart data storage: How MSMEs, startups can channelise limited resources for maximum benefits amid Covid

Technology for MSMEs: Outsourcing with a third-party data center and cloud service provider helps small businesses to utilize modern IT infrastructure and updated IT services. Startups have been depending on data centers and cloud solutions to run smoothly without having to establish additional technology infrastructure.

Technology for MSMEs: India is proving to be a land of promise for the emergence of new-age companies after the Government of India’s massive push on the Startup India campaign. The year 2019 was a big hit for Indian startups; with technology startups in the country raising a record $14.5 billion in investments from Indian and international investors according to a report by Tracxn. However, the global pandemic of Covid-19 has brought with it many unexpected challenges for the startup ecosystem. Startups are now looking towards technology solutions to combat these challenges and come out successfully from the downturn.

Over the years, startups have been depending on data centers and cloud solutions to run smoothly without having to establish additional technology infrastructure of their own. In the current scenario, startups must channelize their limited resources intelligently to reap out maximum benefits for continuity of their operations, focus on customer acquisition and expansion. Outsourcing with a third-party data center and cloud service provider helps small businesses to utilize modern IT infrastructure and updated IT services. Here are some reasons why data centers and cloud solutions are paramount for small business and startups:

Scalable Data storage

Data generation is increasing at a flying pace. Storing data in their own servers can be difficult and would call for additional investment every time there’s a need for more storage capacity. When a startup uses a colocation data center to fulfil their storage needs, they can increase their capacity whenever required and as quickly as the need arises. Moreover, the need is addressed easily without any hassle by altering the current plan and updated as per estimated increase. What’s equally important is the ability to scale down when the demand is low so that the company is able to make savings on their infrastructure costs when the demand diminishes.

Reliable connectivity

A robust multi-carrier network ensures that start-ups have 24×7 access to the data stored and their workloads. Data centers with multi-tenant facilities enable small businesses and startups to enjoy the features of a modern data center that could traditionally only be afforded by big companies. Startups can gain from technology stability, boosted performance and high-end hosting capabilities with the latest software applications.

Improved security & compliance

Data is an asset for every company. As operations increase, businesses must make sure that they take appropriate measures to secure their data. Co-locating at a third-party data center will help start-ups to safeguard their own data as well as client data due to strict access protocols/industry standards being adhered by data centers.

Additional managed services

A business needs much more than data storage and data management for a robust IT infrastructure. Multi-tenant colocation providers serve as integrated IT managed providers along with storage facilities to companies, for example, cloud computing, managed security and IT managed services. These services allow small businesses to work with big data analytics to retract potential insights at a small price, which ultimately leads to improved efficiency and productivity. Businesses are planning to explore innovative and cost-effective BCP solutions and are inclined to move to ‘Anything as a Service’ (XaaS) to harness new technologies. This would provide them with a strong suite of services from service providers and support to drive their business growth.

Enhanced cost efficiencies

Last but not the least, opting to outsource data center services would help startups save a lot of funds. One of the most common reasons due to which startups cease their operations is a shortfall of funds. Building and maintaining an on-premise data center takes a lot of financial, manpower, and time investments that small businesses may not be able to afford. Data center service providers allow them to pay as per their usage and work on the OPEX model instead of blocking funds in a capital investment.

A startup business is known for its innovative ideas, raw energy, incredible passion, amazing talent, and hunger to reach the top. But with the disruption that Covid-19 has brought into an already highly competitive market requires startups to be leaner than ever before and maximize their resources. Hence, reaching out to a colocation data center service provider for a highly scalable and efficient infrastructure layer and the best-in-class cloud services for their business will enable them to succeed in the ecosystem.

Source: https://www.financialexpress.com/industry/msme-tech-smart-data-storage-how-msmes-startups-can-channelise-limited-resources-for-maximum-benefits-amid-covid/2022351/

Decoding Hyperscale Data Centers

You might not realize it, but the amount of data we are consuming and creating is leading to a data explosion. According to the latest report by DOMO, ‘Data Never Sleeps’, by 2020, for every person on earth, 1.7 MB of data will be created every second. Storage giant, EMC claims that there will be around 40 trillion gigabytes of data by next year. These staggering numbers almost feel unreal and abstract. Much like the data centers where all this data is physically stored.

Data Centers – The Unsung Heroes

Data centers, across the world, have been in the background doing their work round the clock, while we have been busy surfing the internet, using instant messengers or binge watching on Netflix. Not too long ago, data centers were treated more like a processing and storage space around the world. However, with the advent of cloud, big data and analytics, data centers are finally taking center stage in the IT world.

Hyperscale Data Centers are the cool kids on the block.

But What Exactly Are Hyperscale Data Centers?

Well as the name suggests, hyperscale is an ability to scale at a hyper speed to meet hyper demand. It is the ability to scale, in order to respond to the increasing demand. Hyperscale demand means ability to add capacity quickly and efficiently, with speed to market being a priority. Increased space, power, computing ability, memory, networking infrastructure, storage resources with optimized performance, is how one would generally define hyperscale data centers.

For example, while a data center (DC) may support hundreds of physical servers and thousands of virtual machines, a hyperscale facility will be able to support thousands of physical servers and millions of virtual machines. While IDC defines a facility as hyperscale if it has at least 5,000 servers and a total size of no less than 10,000 square feet, hyperscale data centers are generally much larger in size and area.

To give you a perspective, Microsoft’s hyperscale DC in Quincy, Washington, has 24,000 miles of network cable, which is nearly enough to go around the earth, and the Azure data center in Singapore is twice of that, as well as has enough concrete to build a sidewalk from London to Paris. Facebook is planning a mega-hyperscale data center in Singapore that will be 11 stories tall and will have an area spanning 1.8 million square feet. Yotta is going live with India’s largest data center at 8.2 Lakh sq.ft and 7,200 racks.

Going Beyond Scale

Apart from sheer size, one of the biggest advantages of a hyperscale DC is upward scalability. For a legacy system to scale up at a rapid pace is a big challenge. A hyperscale data center on the other hand will be able to handle horizontal or vertical scaling efficiently with minimum fuss. It will improve uptime and load times for end-users and run high-volume workloads that also require substantial power easily. A top layer of analytics and machine learning is added in a hyperscale DC.

As efficiency is the mantra of a hyperscale DC, automation is inevitable. Generally, companies that build and operate these DCs focus a lot on automation and self-healing processes. The system thus created is so controlled and automated that the inevitable breaks and delays in an environment will correct themselves, encouraging significant efficiency from the data.

Power efficiency is another pillar of a hyperscale data center. A hyperscale facility will have maximum optimization of its power architecture, bringing the costs and the environmental impact that it has significantly down. A hyperscale data center optimizes airflow throughout the structure. It ensures that the hot air flows in one direction and often reclaims the heat from that exhaust flow for recycling purposes. The Power usage effectiveness (PUE) of a hyperscale facility is much lower than the traditional DCs and much greener.

A Gold Standard: Here to Stay

According to a whitepaper by Linesight called ‘Hyperactive Hyperscale: The next step of the digital revolution’, these facilities are expected to account for more than half of all data centre traffic within the next two years, as data storage requirements grow by 40% annually. JLL reports that the hyperscale market is expected to grow at an annual compound rate of 26.3 percent to $80.6 billion by 2022.

Currently, the hyperscale market is dominated by giants like Google, Microsoft, Amazon and Facebook. However, with prominent Indian conglomerates joining the data center bandwagon, hyperscale DCs will become a norm rather than a trend.

How will Data localization impact the Data Center Market in India?

India – the Land of Rising Data

India is one of the largest generators of data currently. Thanks to our young demographic and deep technology penetration, our data consumption is expected to grow at the rate of 72.6% by 2020 according to a study by Assocham-PwC. Digital data in India was around 40,000 petabytes in 2010; it is likely to shoot up to 2.3 million petabytes by 2020 — twice as fast as the global rate. There is a debate going on in the country currently to store the enormous amount of data within national borders.

Data Localization – Gathering Momentum

The Data Protection Act suggested by the Srikrishna committee, aims at protecting the data of citizens by storing it locally. Another reason for data localization is to help government form better domestic policies for its citizens; RBI has already come out with the mandate for companies to store all the financial data locally.

This move has led to many companies ramping up their data center capacity in the country. Amazon has invested around $197 million (Rs 1,380 crore) in its data services arm in the country. Similar aggressive plans have been announced by ByteDance, Google, Microsoft and many financial institutions. Flipkart too has been strengthening its technology infrastructure. It opened its third data center in Hyderabad in April this year after Chennai and Mumbai, especially after acquisition by Walmart. The Securities and Exchange Board of India (SEBI) has also announced its intention to come up with guidelines that will mandate foreign entities to store data pertaining to India locally.

This has generated a lot of interest in the data center business, among large conglomerates and global tech giants.

Rush for the Data Center Pie

The Hiranandani Group recently entered the data center space with Yotta Infrastructure with plans to build 3 data center parks across Mumbai, Navi Mumbai and Chennai with a capacity of 60,000 racks. The Adani Group has committed to developing large data center parks in Andhra Pradesh over the next 20 years. Existing data center players like Sify, STT, CtrlS, NTT are planning to ramp capacities and international players like Colt and Bridge have also announced their first data center project in India.

Most of the players have officially made statements in media that government’s decision to move forward with data localization is one of the major reasons why they are bullish on data center market. India currently needs to ramp up its data center capacity by at least 15 times in next 7 to 8 years to be able to handle the massive amount of data influx that will enter its borders because of data localization.

How Does this Help Local Businesses?

The next logical question is – will data localization help Indian businesses? It certainly will. Storing data locally will reduce network latency and improve speed. Companies can expect availability of quality talent at lower cost with all data getting stored locally and with the existence of many other strong market drivers like growth of user data, e-commerce, growth of cloud etc. Some of the latest providers with resource ownership will be able to build massive capacities of data centers at much higher scalability and quality but at much reduced costs and round-the-clock personal service. Big Basket, the online grocery store shifted its data centre from Singapore to Mumbai and noticed up to 10 per cent improvements in transaction efficiency.

If one was to compare the cost of manpower, real estate and bandwidth, India is at least 60% cheaper than US or Singapore. These savings will ultimately go to the customers looking for rack space. With large corporate houses having their own power generation and distribution capacities coming in, the cost of data centers should also reduce significantly. Some providers will also utilise selective benefits as made available by Government in terms of duties and taxes levied on power and on the imported equipment/services.

India is a more viable and economic place to build and operate large scale Data centers. Hopefully the government will stick with its decision to go ahead with data localization and we will soon be storing our data in our own land.